Growing CORN IN CHINA

KEY FINDINGS

7% yield increase over MOP
Balanced crop nutrition plan
14% enhanced soil K level

POLY4 BENEFITS

Source of essential nutrients
Sustained nutrient delivery rate, matching crop requirements
Excellent spreading pattern
Easy to store
Low carbon footprint

A CASE FOR POLY4

- Heilongjiang Province in China cultivates 6.6 million hectares of corn.

- This is an area of black soils with very high natural fertility. However, soil-available potassium (K) has decreased over time because of fertilizer plans often lacking K.

- POLY4 is well suited to provide not only K to the corn crop, but also sulphur (S), magnesium (Mg) and calcium (Ca), helping to meet crop demand and to build a nutrient legacy in the soil.
All treatments received 150 kg N ha$^{-1}$ and 70 Kg P$_2$O$_5$ ha$^{-1}$.

IMPROVED YIELD

The inclusion of POLY4 in the fertilizer plans improved corn yield. This highlights the importance of a balanced crop nutrition plan to achieving better yield results.

ENHANCED SOIL NUTRIENT STATUS

POLY4 helped to sustain K soil levels, supporting the efforts to ameliorate the potassium levels in the area.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Nutrient application rate (kg ha$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K$_2$O</td>
</tr>
<tr>
<td>N + P (control)</td>
<td>0</td>
</tr>
<tr>
<td>MOP</td>
<td>70</td>
</tr>
<tr>
<td>MOP + POLY4 (50:50)</td>
<td>70</td>
</tr>
<tr>
<td>MOP + POLY4 (25:75)</td>
<td>70</td>
</tr>
<tr>
<td>POLY4</td>
<td>70</td>
</tr>
</tbody>
</table>

*All treatments received 150 kg N ha$^{-1}$ and 70 Kg P$_2$O$_5$ ha$^{-1}$.

Notes: N and P from urea and DAP at 150 kg N ha$^{-1}$ and 70 Kg P$_2$O$_5$ ha$^{-1}$; Urea split applied 40:60 base:top dress; K applied at 50, 70 and 90 Kg K$_2$O ha$^{-1}$; treatment table and results are the average; MOP to POLY4 ratios are on a K:K basis; pre-trial soil analysis: pH 5.6, 3.9% SOM, 39 mg P kg$^{-1}$, 198 mg K kg$^{-1}$; Cultivar: Demeiya 1.

TRIAL FOCUS

To evaluate the performance of POLY4 in corn compared to MOP.

PARTNER

Northeast Institute of Geography and Agroecology

LOCATION

Heilongjiang, China

DATE

2019

Follow us on social media