EFFECT OF DIFFERENT BLENDING RATIOS OF POLY4 AND MOP ON CORN GROWTH AND YIELD IN NORTH-EASTERN CHINA

Wantai Yu¹, Xiaohui Fan², David Lagarrigue², Ross Mitchell², Robert Meakin²

1) Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; 2) Sirius Minerals, Scarborough, United Kingdom

Abstract

Liaoning province is a major corn producing province in China. Potassium is an important nutrient to enhance corn yield. Polyhalite-based fertilizer POLY4 contains four macro nutrients: potassium (14% K₂O), sulphur (19% S), magnesium (6% MgO) and calcium (17% CaO).

Effects of different blend ratios of POLY4 with potassium chloride (MOP) on corn were investigated in Changtu, Liaoning province in 2018. Treatments were 100% K from MOP, 80% K from MOP + 20% K from POLY4, 60% K from MOP + 40% K from POLY4, and a control without K. All treatments received the same local recommendation rate of N and P from urea and diammonium phosphate.

Applying K increased corn yield compared with the N + P (control). The treatment with 60% MOP + 40% POLY4 had significantly higher yield than both the treatment with 100% MOP and the treatment with 80% MOP + 20% POLY4. The cobs of maize with 60% MOP + 40% POLY4 had 11% more kernels than with 100% MOP.

This study demonstrated that applying POLY4 combined with MOP had better performance on the corn yield than applying MOP alone.

Introduction

- China grows 39 million ha of corn annually the largest corn-growing area in the world. Northeastern China is the main production area. This includes Liaoning province.
- Traditionally, Chinese farmers apply N, P, and occasionally K. This has caused a progressive K depletion in the soils. Therefore, crops could benefit from a balanced crop nutritional plan.

Trial location

• Cultivar Zhitai #3 was used at both sites.

POLYA

- Treatments were applied at planting, along with 40% of the N. The remaining 60% was applied as top dressing.
- The trial was an RCBD design with four replications and 20 m² plots.
- Data analysed by Genstat ANOVA with Fisher's LSD test to separate means when significant (P < 0.05). Means represented by letters indicate significant differences of the results.

Application rate treatments

Treatments	Nutrient application rate (kg ha-1)					
	K ₂ O	S	MgO	CaO		
N + P (control)	0	0	0	0		
MOP	95	0	0	0		
MOP + POLY4 (80:20)	95	25.9	8.1	22.6		
MOP + POLY4 (60:40)	95	51.7	16.3	45.2		

Pre-trial soil nutrient levels

Site	рН	EC (ms m ⁻¹)	N (mg kg⁻¹)	₽ (mg kg⁻¹)	K (mg kg ⁻¹)	Ca (mg kg ⁻¹)	Mg (mg kg ⁻¹)	S (mg kg
		70	4.0.0			4 4 9 9	000	

Yield components

- The number of grains per cob and weight of the grains are factors that influence the total yield. The higher yielding site Changtu had more (P < 0.001) grains per cob than Liaozhong (500 versus 420 grains) and a greater (P < 0.001) thousand grain weight (331 versus 282 g).
- The number of grains per cob was affected (P = 0.002) by fertilizer treatment. Across the two sites, MOP + POLY4 (60:40) had a significantly greater number of grains than the other treatments.
- The MOP + POLY4 treatments had significantly greater thousand grain weight than the N + P (control). MOP was not significantly different from the control or MOP + POLY4 treatments.

Methodology

- The experiment was carried out at two sites Changtu and Liaozhong between May and October 2018.
- The trial at Changtu was rainfed, and at Liaozhong it was irrigated four times.
- The crop was managed according to local practices with application of 210 kg N ha⁻¹ and 105 kg P₂O₅ ha⁻¹ at Liaozhong and 270 kg N ha⁻¹ and 100 kg P₂O₅ ha⁻¹ at Changtu. Urea and diammonium phosphate (DAP) were the nitrogen and phosphorus sources.

Onlangtu	0.0	12	120	01		1720	200	20.2
Liaozhong	6.0	18	28	24	36	375	51.7	11.4

Results

Yield performance

- Grain yield was affected by fertilizer treatment (P < 0.001) and location (P < 0.001). There was no interaction between site and fertilizer treatment (P > 0.1).
- Changtu had an average yield of 9.5 t ha⁻¹ which was significantly (P < 0.001) greater than the yield at Liaozhong of 6.4 t ha⁻¹.
- Across the two sites, the POLY4-containing treatments increased yield compared to N + P (control). MOP did not significantly increase yield compared to the control.
- MOP + POLY4 (60:40) had an average yield of 8.9 t ha⁻¹ which was significantly greater than MOP and N + P (control) with 7.7 and 7.2 t ha⁻¹, respectively. MOP + POLY4 (80:20) had a yield of 8.1 t ha⁻¹ which was significantly greater than N + P (control).

Changtu	N + P (control)	МОР	MOP + POLY4 (80:20)	MOP + POLY4 (60:40)
Yield (t ha-1)	8.6	8.8	9.8	10.9
Grains per cob	473	479	507	539
Thousand grain weight (g)	325	331	330	336

Liaozhong	N + P (control)	МОР	MOP + POLY4 (80:20)	MOP + POLY4 (60:40)
Yield (t ha-1)	5.7	6.5	6.5	6.9
Grains per cob	400	425	396	459
Thousand grain weight (g)	258	284	302	282

Conclusions

- Only POLY4-containing treatments increased corn yield compared to standard local N + P practice.
- This stresses the importance of having a balanced crop nutritional plan to achieve high yields.
- The best performing blend was MOP + POLY4 (60:40), which significantly outperformed MOP in terms of yield across the two trial sites.
- Enhanced grain set and grain weight were the key yield components behind the yield increase.

Sources: FAO (2016); 74000-IAE-74011-18, Institute of Applied Ecology, Chinese Academy of Sciences.

Follow us on social media

