Growing RICE IN CHINA

KEY FINDINGS

Up to 17% yield increase

Improved tillering

Reduced toxic elements uptake

Source of macro and micro nutrients

POLY4 BENEFITS

Extended nutrient delivery profile

Calcium supports soil and plant health

Potassium reduces toxic heavy metal uptake

A CASE FOR POLY4

- China is the world's leading rice producer with Guangdong being one of the most important rice-producing provinces.
- Low fertility red soils deficient of potassium, sulphur, magnesium and calcium are common in Guangdong.
- Potentially toxic elements (PTEs) can also be a problem in polluted, red, paddy soils including cadmium. The consumption of food contaminated with cadmium over a long period of time can cause kidney disease.
- POLY4 supplies potassium, sulphur, magnesium and calcium in one product.

Treatments	Nutrients applied (kg ha-1)				
	K ₂ O	CaO	MgO	S	CI
MOP	140	0	0	0	107
SOP	140	0	0	48	0
POLY4	140	170	60	190	30

*All treatments received 176 kg N ha⁻¹ and 76 kg P_aO_c ha⁻¹ from urea and DAP.

SIGNIFICANT YIELD INCREASE

There was a yield increase in response to the S in SOP and POLY4. Rice fertilized with POLY4 had the greatest yield, implying a benefit of POLY4 beyond K and S.

IMPROVEMENT IN YIELD COMPONENTS

POLY4 and SOP fertilized crops had more tillers than MOP. POLY4 also had a greater thousand grain weight than SOP. Together these components contribute to POLY4 having the highest yield.

-9% **REDUCED UPTAKE OF TOXIC ELEMENTS** -10% The trial site had a high 0.63 0.62 soil cadmium (Cd) 0.57 contamination with content Grain Cd content (mg kg⁻¹) of 1.6 mg Cd kg⁻¹, which exceeded the limit in China $(0.3 \text{ mg Cd kg}^{-1} \text{ at pH} \le$ 7.5). However, Cd content of POLY4-fertilized rice was lower than MOP and SOP, making this of interest for future research on other contaminated sites. MOP SOP POLY4

Notes: 1) Commercial treatment would be NPK with MOP. The SOP treatment was used to check additional S effect on PTE uptake and yield, but is not a commercial option; 2) Initial soil test: pH 4.9; 3% SOM; 5 mg P kg⁻¹; 69 mg K kg⁻¹; 35 mg Mg kg⁻¹; 644 mg Ca kg⁻¹; 47 mg S kg⁻¹; 3) Total Cd 1.6 mg kg⁻¹; available Cd 0.8 mg kg⁻¹; 4) Cultivar: Meixiangzhan.

Source: Guangdong Institute of Eco-Environmental & Soil Sciences (2018), 72000-GIESS-72010-17 (rice).

TRIAL FOCUS

To test the response of rice yield and heavy metals uptake to POLY4 and alternative K fertilizers.

PARTNER

Guangdong Institute of Eco-**Environmental & Soil Sciences**

LOCATION

Renhua County Guangdong China

> DATE 2018

Follow us on social media

in