

A CASE FOR POLY4

- With 320,000 hectares, Poland has the largest potato area in the EU.
- Farmers can use MOP and SOP as a K source.
- The CI present in MOP can detrimentally reduce tuber dry matter content.
- As sulphur depositions in the EU has decreased,
 S deficiency can be problem.

Extended nutrient delivery profile

Blends, stores and spreads well with conventional equipment

Suitable for organic farming

Treatments	Average nutrients applied (kg ha ⁻¹)				
	K ₂ O	MgO	S	CaO	CI
N + P (control)	0	0	0	0	0
MOP + SOP	180	0	32	0	69
MOP + POLY4	180	10	32	29	125

^{*}All treatments received standard applications of N and P fertilizer.

o c d'a

GREATER TUBER YIELD

With the POLY4 fertilizer plan, tuber yield was significantly greater at both sites (+6% and +9%). Improved yield increased revenue by US\$359/ha.

INCREASED DRY MATTER CONTENT

The POLY4 fertilized potato tubers had greater dry matter content than the MOP + SOP at both sites. This difference was significant at one site. Higher dry matter content is the most important characteristic that helps to attract a price premium from the potato frying industry. For processing, high tuber dry matter content influences the oil absorption rate to achieve a good fry colour.

Notes: 1) FAOSTAT (2019); 2) Treatments applied at planting. N and P_2O_5 provided by AN at 455 kg ha⁻¹ and DAP at 100 kg ha⁻¹, respectively. MOP and SOP are blended to provide K_2O in a 50:50 ratio, whereas MOP + POLY4 are blended to provide K_2O in a 85:15 ratio. Pre-trial soil analysis at Kepa: 15 mg P kg⁻¹, 181 mg K kg⁻¹, 1550 mg Ca kg⁻¹, 10 mg Mg kg⁻¹, 116 mg S kg⁻¹, pH KCl 6.1, 0.87% organic carbon, EC 17 μ S cm⁻¹, CEC 33 cmol 100g⁻¹; Osiny: 23 mg P kg⁻¹, 192 mg K kg⁻¹, 1150 mg Ca kg⁻¹, 37 mg Mg kg⁻¹, 126 mg S kg⁻¹, pH KCl 5.6, 0.88% organic carbon, EC 8 μ S cm⁻¹, CEC 20 cmol 100g⁻¹; 3) Genstat means of trials at both locations. Cultivars used were Lord and Oberon; 4) Data presented after application of 180 kg K_2O ha⁻¹ was the recommended application rate; 5) Potato price obtained from FAOSTAT.

Source: Institute for Soil Science and Plant Cultivation, Pulawy (2018), 49000-PUL-49012-18 (potato).

TRIAL FOCUS

To compare POLY4 performance with commonly-used K fertilizers for potato production in Poland.

PARTNER

Institute for Soil Science and Plant Cultivation, Puławy, Poland

LOCATION

Kepa and Osiny, Poland

DATE **2018**

Follow us on social media

