Growing CORN IN CHINA

KEY FINDINGS

16% higher grain yield

10% more kernels per cob Improved potassium use efficiency

POLY4 BENEFITS

Sustained nutrient release dynamics

Source of K and Mg with sulphate S, Ca and additional micro nutrients

Blends, stores and spreads well with conventional equipment

Low carbon footprint

A CASE FOR POLY4

- Liaoning province is a major corn producing province in north-eastern China.
- K is usually supplied as MOP.
- Corn can benefit from POLY4's additional macro and micro nutrients supplied in a single application.

Treatments	Nutrient application rate (kg ha ⁻¹)			
	K ₂ O	MgO	s	CaO
N + P (control)	0	0	0	0
MOP	95	0	0	0
MOP + POLY4 (80:20)	95	8	26	23
MOP + POLY4 (60:40)	95	16	52	45

*All treatments received typical applications of N and P.

HIGHER GRAIN YIELD AND INCREASED NUMBER OF KERNELS

Yields achieved with the MOP + POLY4 (60:40) blend were significantly higher than yields obtained with straight MOP. The cobs of corn fertilized with POLY4 also had 10% more kernels.

+10%

IMPROVED ECONOMICS

POLY4 blends supported the highest revenue.

INCREASED POTASSIUM USE EFFICIENCY

Notes: 1) Data presented are averages of both sites. Trials were conducted at two sites in Liaoning province: Changtu and Liaozhong. Pre-trial soil level at Changtu; pH: 5.6; 81 mg P kg⁻¹; 121 mg K kg⁻¹; 1420 mg Ca kg⁻¹; 239 mg Mg kg⁻¹; 128 mg N kg⁻¹; EC: 72 mS cm⁻¹, Pre-trial soil level at Changtu; pH: 5.6; 81 mg P kg⁻¹; 36 mg K kg⁻¹; 375 mg Ca kg⁻¹; 239 mg Mg kg⁻¹; 11 mg S kg⁻¹; 28 mg N kg⁻¹ EC: 72 mS cm⁻¹, Pre-trial soil level at Liaozhong; pH: 6.0; 24 mg P kg⁻¹; 36 mg K kg⁻¹; 375 mg Ca kg⁻¹; 25 mg Mg kg⁻¹; 11 mg S kg⁻¹; 28 mg N kg⁻¹ EC: 18 mS cm⁻¹; 2) Cultivar used in the trial was Zhitai No. 3. Trial at Changtu was rainfed, whereas Liaozhong was irrigated four times. N supplied with urea at both sites. N applied at Changtu: 270 kg ha⁻¹, N applied at Liaozhong: 210 kg ha⁻¹, P.O., supplied with DAP at a rate of 99 kg ha⁻¹ at Changtu and at 104 kg ha⁻¹ at Liaozhong. Treatment structure: control: No K₂O added. MOP + POLY4 (80:20): 20% of total K₂O supplied with POLY4, MOP + POLY4 (60:40): 40% of total K₂O supplied with POLY4. MOP: 100% of K₂O supplied with POLY4 (30:20): 20% of total K₂O supplied with POLY4 (60:40): 40% of total K₂O supplied with POLY4. MOP + OLY4 (60:40): 40% of total K₂O supplied with POLY4. MOP + 100% of K₂O supplied with POLY4 (30:20): 20% of total K₂O supplied with POLY4 (50:40): 40% of total K₂O supplied with POLY4. MOP + 100% of K₂O supplied with POLY4 (30:20): 20% of total K₂O supplied with POLY4 (60:40): 40% of total K₂O supplied with POLY4 (40; V₂O mas separation by Fisher's LSD test at the 5% significance level; 4) Crop revenue considered a price of US\$264/t (Argus, April 2019); 5) Potassium use efficiency is agronomic efficiency, which is defined as yield obtained – yield of control/K₂O rate per hectare (kg ha⁻¹ gained of grain/kg ha⁻¹ of fertilizer).

Source: Institute of Applied Ecology, Chinese Academy of Sciences (2017), 74000-IAE-74011-18. (corn).

TRIAL FOCUS

To evaluate the effect of MOP + POLY4 on corn performance and to compare it to the standard practice of MOP as the sole K source.

PARTNER

Institute of Applied Ecology, Chinese Academy of Sciences

LOCATION

Liaoning province, China

DATE 2018

Follow us on social media

in