Growing TOMATOES IN BRAZIL

KEY FINDINGS

6% higher marketable fruit yield
Improved economic return
Enhanced soil nutrient legacy

A CASE FOR POLY4

• São Paulo state is the second largest tomato producer in Brazil.

• Tomatoes are a high-value crop that can respond to K, Ca, Mg and S contained in POLY4 to produce optimal yield and quality.

• POLY4 contains 17% CaO, which helps reinforce cell walls and improve fruit firmness. Ca is also essential for supporting soil health.

poly4.com
HIGHEST MARKETABLE FRUIT YIELD

The POLY4 fertilizer plan delivered the highest marketable fruit yield across the three sites improving the yield of all size grades. The increased yield improved economic return by up to 11%.

MAINTAINING FRUIT QUALITY

Firmness and taste characteristics of tomatoes grown with POLY4 were maintained at harvest and during storage compared to other treatments. Maintaining these characteristics during storage is important for ensuring crop quality.

ENHANCED SOIL NUTRIENT STATUS

Fertilizing with POLY4 supports a sustainable soil nutrient legacy. The post-harvest soil Ca was highest after the POLY4 treatment. Calcium and magnesium fertility are particularly important in Brazilian agriculture.

Notes: 1) [https://www.dinheirorural.com.br/secao/agronegocios/profissionalizacao-do-tomate](https://www.dinheirorural.com.br/secao/agronegocios/professionalizacao-do-tomate); 2) Calagem e adubação do tomate de mesa / Paulo Espindola Rani; Edison Akira Kariya; Sergio Minoru Hanai; et al. Campinas: Instituto Agronômico, 2015. 35 p. online. (Série Tecnologia Apta. Boletim Técnico IAC, 215) ISSN 1809-7936 3) Initial soil analysis: Site 1 (Cerquilho): pH 5.5, 10 mg P kg⁻¹, 81 mg K kg⁻¹, 62 mg Mg kg⁻¹, 253 mg Ca kg⁻¹, 7 mg S kg⁻¹; Site 2 (Cerquilho): pH 5.4, 10 mg P kg⁻¹, 61 mg K kg⁻¹, 51 mg Mg kg⁻¹, 202 mg Ca kg⁻¹, 6 mg S kg⁻¹; Site 3 (Conchal): pH 5.0, 9 mg P kg⁻¹, 84 mg K kg⁻¹, 115 mg Mg kg⁻¹, 320 mg Ca kg⁻¹, 8 mg S kg⁻¹. 4) All plots received 300 kg N ha⁻¹ and 500 kg P₂O₅ ha⁻¹ from urea and MAP.

TREATMENT

- **N + P (control)**
- **MOP**
- **MOP + SSP**
- **MOP + SOP**
- **MOP + SOP-M**
- **MOP + POLY4**

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Average nutrients applied (kg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K₂O</td>
</tr>
<tr>
<td>N + P (control)</td>
<td>0</td>
</tr>
<tr>
<td>MOP</td>
<td>300</td>
</tr>
<tr>
<td>MOP + SSP</td>
<td>300</td>
</tr>
<tr>
<td>MOP + SOP</td>
<td>300</td>
</tr>
<tr>
<td>MOP + SOP-M</td>
<td>300</td>
</tr>
<tr>
<td>MOP + POLY4</td>
<td>300</td>
</tr>
</tbody>
</table>

All treatments received standard applications of N and P fertilizer.

Source: University of São Paulo (2017), 4000-USP-4024-17 (Tomatoes).