

TRIAL RESULTS

POTATO

BULANDSHAHAR (UTTAR PRADESH), INDIA (2018)

TRIAL OBJECTIVE

To assess the response of potato yield and quality to POLY4 fertilizer in India.

Leading states for potato production in India are:

Province	Production (Mmt)
Uttar Pradesh	13.9
West Bengal	8.4
Bihar	6.4
Gujarat	3.6
Madhya Pradesh	3.2

OVERVIEW

PARTNER: Sardar Vallabhbhai Patel

University of Agriculture and

Technology.

LOCATION: Bulandshahar

YEAR: 2018

- 2.2 million hectares of potato were planted in India in 2017–2018 with total annual production of 49 Million metric tonnes (Mmt).¹
- The trial was in Uttar Pradesh which produced more potatoes than any other state in India.¹
- The potato variety used was Kufri Bahar a variety grown for table potatoes.
- The performance of POLY4 was tested against recommended application rates of K₂O and S by locally-typical MOP and elemental sulphur fertilizer.
- The trial was a randomised block design with three replicates.
- Potato yield data is presented for 100 kg K₂O ha⁻¹

TD	E A	TN	IEN	ΛR	L E ²⁻⁵

Treatments	Nutrients applied (kg ha ⁻¹)								
	N	P_2O_5	K_2O	S	MgO	CaO	CI-3		
N + P (control)	180	80	0	0	0	0	0		
POLY4 50	180	80	50	68	21	61	11		
POLY4 100	180	80	100	136	43	121	21		
POLY4 150	180	80	150	204	64	182	32		
MOP50 + S	180	80	50	68	0	0	40		
MOP100 + S	180	80	100	136	0	0	80		
MOP150 + S	180	80	150	204	0	0	120		
MOP + POLY4 (25:75)	180	80	100	102	32	91	36		
MOP + POLY4 (50:50)	180	80	100	68	21	61	51		
MOP + POLY4 (75:25)	180	80	100	34	11	30	63		

EARLY CROP GROWTH²⁵

HEIGHT VERSUS DAYS AFTER PLANTING (DAP)5.6

- Plant height and leaf area index allow plants to shade-out weeds that otherwise compete for space, nutrients and water.
- POLY4 increased crop growth compared to MOP + S at 60 and 75 DAP.
- POLY4 improved leaf area index (LAI) by 5% compared to MOP + S. Higher LAI means the crop

SPAD VALUE^{5,6,*}

has a denser canopy cover which leads to better weed control and greater light interception for photosynthesis.

 Soil-plant analysis development (SPAD) is a measure of the greenness, which is proportionate to the chlorophyll content of leaves. The POLY4 treatment had a higher SPAD value.

POTATO YIELD²⁵

POTATO YIELD²⁵ continued...

- Compared to MOP + S, POLY4 fertilizer increased total and marketable yield.
- Yields were also significantly⁵ higher in response to increased proportion of POLY4 in the fertilizer blend.
- Tubers that weighed less than 25 g were considered as non-marketable.
- POLY4 increased the number of marketable tubers compared to MOP + S.
- The proportion of potato yield that was nonmarketable was reduced by 27%.

POTATO QUALITY: DRY MATTER CONTENT

- Higher dry matter content (DM%) is the most important characteristic that helps to attract a price premium from the potato frying industry. For processing, high tuber dry matter content influences the oil absorption rate to achieve a good fry colour.
- DM% content was increased with the use of POLY4.

FINANCIAL ANALYSIS^{5,7}

- Farmer margins were increased progressively as a greater proportion of the K fertilizer was applied by POLY4.
- The POLY4 treatment gave the best additional margin by US\$192/ha compared to MOP + S.

Notes: 1) Statistics of Horticulture, Ministry of Agriculture & Farmers Welfare, India (2017); 2) Treatment table is based on the recommended K₂O rate of 100 kg K₂O ha⁻¹. MOP + S contains elemental sulphur with bentonite. All treatments received 180 kg N ha⁻¹ and 80 kg P ha⁻¹. MOP + POLY4 was used in a ratio of 66.7:33.3 K₂O; 3) POLY4 = 3 % Cl⁻; and MOP = 48% Cl⁻; Initial soil analysis: pH 7.5; 7 mg P kg⁻¹, 71 mg K kg⁻¹; and 7 mg S kg⁻¹; 4) pH and EC measured in a 1:2.5 soil:water extraction; 5) Results presented are based on data from GENSTAT factorial plus added control and regression analyses with significance tested at 5% level; 6) Measured 60 days after planting; 7) Fertilizer prices based on local prices: MOP (US\$194/t), POLY4 (US\$181/t), bentonite (US\$270/t). Analysis accounts for fertilizer application of spreading cost of US\$9.10/t. Potato price was US\$75/t. Margin = crop output (US\$/ha) minus (cost of fertilizer material plus spreading cost).

Source: Sardar Vallabhbhai Patel University of Agriculture and Technology (2018) 76000-SVPU-76010-17

