

# POTATO YIELD AND DRY MATTER RESPONSE TO DIFFERENT SOURCES OF **POTASSIUM FERTILIZER IN THE UK**

Ross D.J. Mitchell, Tim D. Lewis, Robert Meakin, Kiran Pavuluri

Anglo American, Resolution House, Lake View, Scarborough, North Yorkshire, United Kingdom. YO11 3ZB.

### Introduction

- Europe produced 91.1M t of potatoes from 3.5M ha in 2014.
- Potassium (K) nutrition is critical for potato yield, quality and marketability.
- On average 221 kg  $K_2$ O ha<sup>-1</sup> is applied to maincrop potatoes in the UK.
- MOP (muriate of potash) is the most common K fertilizer. MOP contains Cl<sup>-</sup> which can affect quality of potato crops.
- POLY4 is a naturally occurring multi-nutrient containing four of the six crop macro nutrients (K, Ca, S and Mg), but with a very low concentration of Cl-



## **Statistical analysis**

## **Dry matter quality**

- Supply of K, Mg and Cl<sup>-</sup> can influence tuber dry matter content.
- Pentland Dell is a processing variety that requires high tuber dry matter content.
- Fertilizer treatments did not significantly affect DM% in two of the three trials.
- Some trends can be identified.
- On average, the MOP had the least DM% (figure 3).
- The effect of fertilizer treatments on DM% though were modest and inconsistent (94.1-96.5% of no K control for all K fertilizer treatments).

- The trials determined the K response of potatoes and the relative effectiveness of POLY4 against other fertilizers.

### **Treatments**

- All sites:
  - K application presented where crop demand was met;
  - N and P supplied by ammonium nitrate and triple super phosphate (according to fertilizer recommendations);
  - All treatments were replicated four times in a randomised block design;
  - Each plot was 10m long, contained two beds with four rows of potatoes;
- Site 1:variety = Pentland Dell.
- Sites 2 and 3:variety Casablanca at site 2 and Estima at site 3.

#### Table 1: Treatments applied for different fertilizer sources in **Staffordshire in 2015**

| NUTRIENT               | APPLICATION RATE (kg ha <sup>-1</sup> ) |                                             |                  |     |     |     |     |
|------------------------|-----------------------------------------|---------------------------------------------|------------------|-----|-----|-----|-----|
|                        | Ν                                       | <b>P</b> <sub>2</sub> <b>O</b> <sub>5</sub> | K <sub>2</sub> O | MgO | CaO | S   | Cl  |
| Control                | 170                                     | 100                                         | 0                | 0   | 0   | 0   | 0   |
| Control + kieserite    | 170                                     | 100                                         | 0                | 80  | 0   | 37  | 0   |
| MOP                    | 170                                     | 100                                         | 300              | 0   | 0   | 0   | 200 |
| MOP + POLY4<br>(75:25) | 170                                     | 100                                         | 300              | 32  | 90  | 101 | 166 |
| POLY4                  | 170                                     | 100                                         | 300              | 128 | 364 | 407 | 64  |

#### Table 2 : Nutrients applied for all treatments at site 2 and 3

| NUTRIENT |     | APPLICATION RATE (kg ha <sup>-1</sup> ) |                  |     |     |   |     |  |  |
|----------|-----|-----------------------------------------|------------------|-----|-----|---|-----|--|--|
|          | N   | P <sub>2</sub> O <sub>5</sub>           | K <sub>2</sub> O | MgO | CaO | S | Cl. |  |  |
| Control  | 160 | 150                                     | 0                | 0   | 65  | 0 | 0   |  |  |

Statistical analysis was carried out using GenStat software version 17 (VSN International, 2011) using ANOVA and regression analysis. Treatments were compared by using single degree of freedom contrasts.

## **Yield results**

Two of the three sites provided significant yield response to fertilizers (Figure 1). The fertilizer treatments demonstrated a similar trend across all three sites. The data is presented in Figure 2.

### Figure 1: Yield response to fertilizer treatments (UK, 2015 and 2016)



### Figure 2: Average normalised yields (% of no K control) for fertilizer treatments



- Potato size grades were not significantly affected by fertilizer treatments (data not shown).

### Figure 3: Effect of fertilizer treatments on potato DM%



for control + kieserite = 99.2% control DM%.



# Conclusions

| MOP                    | 160 | 150 | 200 | 0  | 65  | 0   | 160 |
|------------------------|-----|-----|-----|----|-----|-----|-----|
| MOP + kieserite        | 160 | 150 | 200 | 21 | 65  | 7   | 160 |
| MOP + POLY4<br>(75:25) | 160 | 150 | 200 | 21 | 126 | 27  | 131 |
| POLY4                  | 160 | 150 | 200 | 85 | 33  | 109 | 43  |

### Soil analysis

Site 1 - P 28 mg kg<sup>-1</sup>, K 106 mg kg<sup>-1</sup>, Mg 46 mg kg<sup>-1</sup> Site 2 - pH 5.9, P 8 mg kg<sup>-1</sup>, K 99 mg kg<sup>-1</sup>, Mg 86 mg kg<sup>-1</sup> Site 3 - pH 5.8, P 4.7 mg kg<sup>-1</sup>, K 90 mg kg<sup>-1</sup>, Mg 86 mg kg<sup>-1</sup>, S 17 mg kg<sup>-1</sup> 90 Control MOP MOP + POLY4 POLY4 (75:25)

Notes: 3 sites data. 2 sites data for MOP+kieserite = 107% control yield. 1 sites data for Control + kieserite = 104% control yield.

Fertilizer treatments including POLY4 had five of the six greatest treatment crop yields. The MOP + kieserite was also broadly competitive with the POLY4 treatments (only one site). These multi-nutrient fertilizer treatments out-yielded the straight MOP treatment (+1 to +18% of control yield compared to MOP treatment). This indicates a benefit of the S applied in fertilizer treatments and a potential boost from the combined nutrients in POLY4. The MOP + kieserite had a similar yield to the POLY4 treatments indicating that, to maximise potato yield, fertilizers that provide K, Mg and S were required.

 POLY4 and its blends were effective at increasing potato yields. POLY4 tends to out-yield MOP treatments, including those looking to balance inputs of Mg and S. Further work is required to conclude the benefits.

• There was a trend towards higher dry matter content with increasing POLY4 in the fertilizer programmes.

