

TRIAL RESULTS

FLORIDA (2014)

poly4.com

TRIAL OBJECTIVE

To determine the response of POLY4 (straights and blends) on tomatoes against MOP, SOP and blend options.

HIGHLIGHTS

UP TO 56% IMPROVED K UPTAKE INTO LEAVES COMPARED TO STRAIGHTS OR BLENDS

LOWER DISEASE INCIDENCE THROUGHOUT GROWTH

UP TO 53% HIGHER TOTAL YIELD WITH STRAIGHTS

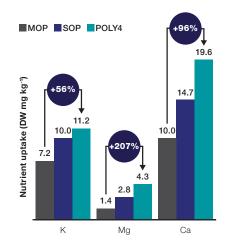
74% IMPROVEMENT IN TOTAL YIELDS IN BLENDS

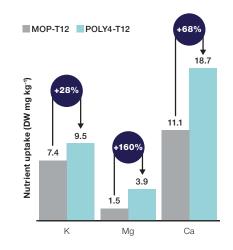
HIGHER PULP:JUICE RATIO IN BOTH STRAIGHTS AND BLENDS

TRIAL DESIGN

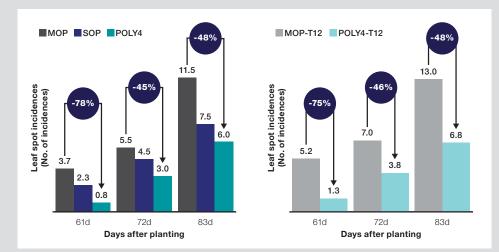
PARTNER:	UNIVERSITY OF FLORIDA
LOCATION:	US
YEAR:	2014

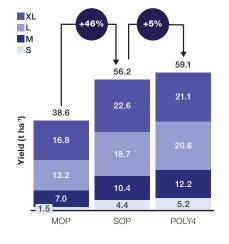
- Most of the tomato crop is field grown with 62% of the world supply produced by China, India, Turkey, Egypt and the USA.
- The global tomato industry is worth US\$91 billion grown on a total of 4.9 million hectares in 2013¹.
- Tomatoes consume approximately 0.6 Mtpa of K₂O globally which is equivalent to 4.3 Mtpa of POLY4².
- Field trials were conducted on very gravelly loam with a shallow profile that drains well.
- Nine beds of 1m width by 110m long by 0.1m high divided into plots with 18 plants per plot.
- Drip lines were installed before the beds were covered with plastic mulch.
- Straight and blend treatments were applied at three rates 100, 175 and 250 kg K₂O ha⁻¹ with a control of N+P only.

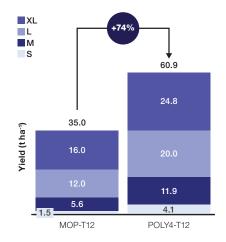

TREATMENT TABLES

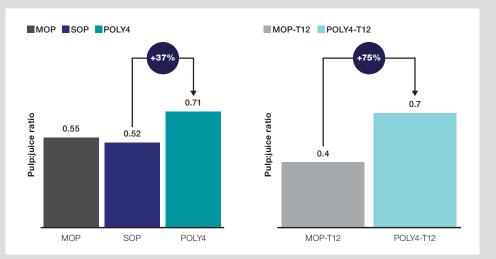

STRAIGHT TRIAL									T12 TRIAL								
	TREATMENTS AVERAGE NUTRIENTS APPLIED IN TRIAL (kg ha ⁻¹)								TREATMENTS	AVER	g ha⁻¹)						
		N	P ₂ O ₅	K₂O	CaO	MgO	S	CI		N	P ₂ O ₅	K₂O	CaO	MgO	S	CI	
	Control	225	168	0	73	0	0	0	MOP	175	175	175	76	0	0	140	
	MOP	225	168	175	73	0	0	140									
	SOP	225	168	175	73	0	25	11	POLY4	175	175	175	285	75	239	37	
	POLY4	225	168	175	285	75	238	38									

LEAF TISSUE NUTRIENT UPTAKE – 45 DAYS^{(DW mg kg⁻¹)³⁻⁶}


- POLY4 as a potassium source is supportive of significantly greater tissue levels of K than MOP indicating a greater fertilizer use efficiency at the same application rate.
- Despite adequate soil supply POLY4 fertilizers encourage a significant increase in calcium.


TOMATO LEAF SPOT INCIDENCE (No. of incidents)³⁻⁷


- Tomatoes fed by POLY4 blends and straights have significantly lower early and final disease incidence.
- POLY4 appears to help the crop combat disease infection throughout the crop's life.
- Supporting a healthy crop with the broad spectrum of nutrients available from POLY4 contributes towards disease defence enabling the plant to use vital resources to build yield.


- Additional nutrients from POLY4 lift the ceiling on the K₂O rate-yield response.
- Market target for this variety are large/ extra large fruit categories.
- POLY4 shows improvements of 39% over straight MOP and 60% improvement over MOP-T12 for the large/extra large fruit categories.
- The additional nutrients of POLY4 consistently improve total yields over MOP or SOP based treatments by up to 74%.

TOMATO QUALITY (pulp:juice ratio)³⁻⁶

- Crop fed on a POLY4 straight or blend results equally in a significantly greater pulp:juice ratio.
- Pulp is indicative of longer shelf life and greater suitability for pasta sauce processing.
- The overall result is a premium due to yield and quality making a very positive impact on farmer economics.

Notes: 1) FAOSTAT 2017; 2) Roland Berger 2011 data; 3) GENSTAT mean; 4) Straight treatments received 220 kg N ha⁻¹ and 168 P₂O₅ ha⁻¹ from urea and TSP; 5) MOP Triple 12 blends were made with urea, TSP and MOP; 6) POLY4 Triple 12 blends were made with urea, TSP, MOP and POLY4; 7) Disease causal organism by *Xanthomonas campestris pv. vesicatoria* and early blight caused by *Alternaria solani*. Initial soil analysis pH 7.3, P 92.8 mg kg⁻¹, K 102.6 mg kg⁻¹, Ca 21123 mg kg⁻¹, Mg 177 mg kg⁻¹, SO₄ 31 mg kg⁻¹, EC 98uS/cm.

Sources: University of Florida (2014) 1000-UOF-1016-13

siriusminerals.com | +44 1723 470 010 | commercial@siriusminerals.com

Registered Address: 3rd Floor Greener House, 66–68 Haymarket, London SW1Y 4RF, UK Company Registered Number: 4948435

