

TRIAL RESULTS TOMATO (BACTERIAL SPOT DISEASE)

FLORIDA, US (2015)

poly4.com

TRIAL OBJECTIVE

To compare K fertilizer source effectiveness on tomato plant health to combat bacterial spot and rates of application using POLY4.

HIGHLIGHTS

CALCIUM HAS VALUE IN CONTROLLING BACTERIAL SPOT

UP TO 89% DECREASE IN DISEASE SEVERITY COMPARED TO OTHER K SOURCES

HIGHER RATES OF POLY4 ARE MOST EFFECTIVE FOR DISEASE CONTROL

TRIAL DESIGN

PARTNER:	UNIVERSITY OF FLORIDA
LOCATION:	FLORIDA, US
YEAR:	2015
CROP VARIETY:	FLORENTINE

- Bacterial spot is a plant disease caused by *Xanthomonas* bacteria species on tomatoes grown in warm humid conditions¹.
- Early infection appears as yellow leaves that twist and distort leading to lesions turning dark brown and necrotic spots developing on leaves and fruit.
- China, India, Spain, Brazil, Mexico and US are six of the top ten tomato producers globally that face the challenge of bacterial spot¹.
- A glasshouse trial provided a controlled environment for inoculation of tomato plants, it was divided into four bench sections.
- Plants were inoculated with the bacterial spot organism via a suspension at 53 and 67 days after planting
- Two sections (Study 1) used MOP, SOP, SOP-M and POLY4 at a fixed application rate of 200 kg $\rm K_2O~ha^{-1}$ on inoculated and non-inoculated tomato plants.
- The other two sections (Study 2) ran in parallel used applications of POLY4 from 0–250 kg K_2O ha⁻¹ with fixed amounts of N and P.
- Disease severity was measured as percentage of canopy affected by bacterial spot at 72, 80, 87 and 95 days after transplanting with plant measurements conducted at 107 days after harvesting.

NUTRIENTS APPLIED IN STUDY 1 ^{(kg ha-1)²}

Nutrient Input	K ₂ O	CaO	MgO	S
Control	0	84	0	0
MOP	200	84	0	0
SOP	200	84	0	72
SOP-M	200	84	67	113
POLY4	200	327	85	271

NUTRIENT INPUTS SUPPLIED BY POLY4 IN STUDY2 (kg ha⁻¹⁾²

K ₂ O	CaO	MgO	S
0	0	0	0
50	60	21	68
150	182	64	205
250	304	107	344

STUDY 1 – BACTERIAL SPOT DEVELOPMENT²⁴

- Varying the potassium source affects bacterial spot disease development post-planting.
- The greatest difference in macronutrient application was calcium from POLY4, supplying nearly four times more than the other treatments, clearly demonstrating its value.
- At 95 days post planting, POLY4 significantly lowered disease infection rates by 82% compared to SOP, by 80% compared to SOP-M and by 78% compared to MOP⁵.

STUDY 1 – LEAF VISUAL ASSESSSMENT ²⁻⁶

STUDY 2 – BACTERIAL SPOT DEVELOPMENT²⁻⁴

- In a parallel study, tomato plants were treated with increasing POLY4 application rates ranging from 0 to 250 kg K₂O ha⁻¹ balanced for nitrogen and phosphorus².
- POLY4 was most effective at 250kg K_2O ha⁻¹ with a 59% reduction compared to the control.
- Over time, 50 kg K₂O ha⁻¹ from POLY4 lowered infection rates to less than that experienced with the control.

Days after transplanting

STUDY 2 – LEAF VISUAL ASSESSMENT

- Infection rates were lowest in treatments supplied with more than 150 kg $\rm K_2O$ ha^-1.
- At 150 kg K₂O ha⁻¹, POLY4 supplies an additional 182 kg CaO ha⁻¹, 64 kg MgO ha⁻¹ and 203 kg S ha⁻¹.

Visual symptoms with increased K₂O rates from POLY4 (kg K₂O ha⁻¹)

Notes: 1) Obradovic et al. 2008; 2) All plants were supplied 194 kg N ha⁻¹ as Urea and 194 kg P_2O_5 ha⁻¹ as TSP; 3) GENSTAT regression analysis; 4) Infection rates determined from amount of plant leaf canopy showing infection; 5) p<0.001; 6) 72 days after transplanting. Initial soil analysis: very gravelly loam, pH 7.3, 2.4% organic matter, K 85 mg kg⁻¹.

Bacterial spot severity (% canopy affected)

Sources: University of Florida (2015) 1000-UOF-1020-14

siriusminerals.com | +44 1723 470 010 | commercial@siriusminerals.com

Registered Address: 3rd Floor Greener House, 66–68 Haymarket, London SW1Y 4RF, UK Company Registered Number: 4948435

