

TRIAL RESULTS **POTATOES**

MINNESOTA (2015)

TRIAL OBJECTIVE

To evaluate POLY4 (straight and in combination with MOP) at recommend K₂O rate against MOP balanced for N, P, K, S, Ca and Mg.

HIGHLIGHTS

YIELD IMPROVEMENTS ACROSS ALL SIZE CATEGORIES

PARTLY K SUBSTITUTION WITH POLY4 INCREASED NUTRIENT UPTAKE BY UP 63% FOR K, Ca, Mg AND S

MAINTAINED POTATO QUALITY

DEMONSTRATED ECONOMIC CASE OF K SUBSTITUTION OF POLY4

TRIAL DESIGN

PARTNER:	UNIVERSITY OF MINNESOTA
LOCATION:	US
YEAR:	2015

- Potatoes are the world's second largest nongrain crop and the fourth largest food crop with 381 Mt produced in 2014 worldwide¹.
- The value of potatoes sold in 2014 was worth US\$3.9 billion in the US¹.
- 66% of potatoes sold are for processing into snacks, french fries or other products for foodstuffs.
- Previous potato trials in the US have shown using POLY4 to supply up to 100% of the K₂O requirement benefits potato yield and quality.

TREATMENT TABLE

NUTRIENT	NUTRIENT APPLIED IN TRIAL (kg ha¹)							
	N	P ₂ O ₅	K₂O	MgO	CaO	S	CI	
Control	268	152	0	0	0	0	0	
POLY4	268	152	448	192	544	608	96	
MOP balanced ³	268	152	448	192	544	153	358	
POLY4 + MOP (50%:50% K ₂ O) ⁴	268	152	448	96	272	304	227	
POLY4 + MOP (75%:25% K ₂ O)⁴	268	152	448	144	408	456	162	

MARKETABLE YIELD

- Analysis of marketable yield by size identifies beneficial effects of POLY4.
- POLY4+MOP (75%:25% K₂O) showed the greatest benefit to all potato sizes compared to balanced MOP as nutrient source greatly effects tuber sizes.

Potato size breakdown of marketable yield¹⁻⁵

TUBER MACRO-NUTRIENT UPTAKE

- Increases in macro-nutrients in the tuber drives yield.
- Compared to all POLY4 treatments, MOP balanced treatments had the lowest nutrient uptakes.
- The differences in nutrient uptake between MOP balanced and POLY4 treatments reflects the crops need to see the right nutrients from the right source at the right time.

POTATO QUALITY²⁻⁵

- High specific gravity reflects tuber dry matter indicating superior fry quality.
- The nutrient source has little effect on glucose content of tubers.
- MOP balance was found to have the lowest yield and lowest dry matter content.

FERTILIZER PLAN	QUALITY PARAMETER						
	Specific gravity adjusted (%)	Tuber dry matter (%)	Bud end glucose (mg g⁻¹)	Stem end glucose (mg g⁻¹)	Dry matter yield (t ha ⁻¹)		
POLY4	1.07	20.4	0.36	3.22	11.73		
MOP balanced ³	1.07	18.8	0.37	2.36	9.90		
POLY4 + MOP (50%:50% K ₂ O) ⁴	1.07	20.1	0.27	3.51	11.71		
POLY4 + MOP (75%:25% K ₂ O) ⁴	1.07	20.4	0.28	3.73	12.73		

POTATO ECONOMICS

- Changing the nutrient inputs has financial implications for growers.
- A crop margin assessment indicates the importance of nutrient sources on costs vs returns³.
- Spreader costs are included to account for the different weights of fertilizer applied⁴.
- MOP with gypsum and kieserite showed the worst economic returns due to yield limitations and moderate input costs.
- Use of POLY4 with MOP showed higher economic returns driven by higher yields.

Notes: 1) FAOSTAT (2017); 2) POLY4 and MOP were used in a ratio to meet K₂O requirement; 3) All treatments received 268 N kg ha⁻¹ and 152 kg P₂O₅ ha⁻¹, 2.2 kg Zn ha⁻¹, 0.6 kg B ha⁻¹ from UAN, ESN, MAP, Zinc Chloride and Boric acid; 4) MOP balanced treatment contains lime and kieserite; 5) GENSTAT means; 6) Fertilizer prices based on US Mid-West 2016 annual prices: MOP (US\$214/t), POLY4 (US\$200/t), Lime (US\$25/t), Kieserite (US\$250/t); 7) Analysis accounts for yield changes and fertilizer application cost of US\$16.16/t; 8) Potato price USDA National 2016 US\$197.58/t. Initial soil analysis: Soil organic matter 1.12%, N 4.8%, P 37 mg kg⁻¹, K 83 mg kg⁻¹, Ca 266 mg kg⁻¹, Mg 46 mg kg⁻¹, S 3.5 mg kg⁻¹.

Sources: USDA, University of Minnesota (2015) 14000-UMN-14011-15

siriusminerals.com | +44 1723 470 010 | commercial@siriusminerals.com

Registered Address: 3rd Floor Greener House, 66–68 Haymarket, London SW1Y 4RF, UK Company Registered Number: 4948435

