

Potato

Trial results in Minnesota, US (2016)

- Improved tuber size
- Improved yield and quality
- Reduced fertilizer spreading cost
- Greater financial margin

Trial objective

to determine the effectiveness of POLY4 as a fertilizer for potato production.

Treatment table³

TREATMENTS	AMOUNT OF NUTRIENT APPLIED (kg ha ⁻¹) ³							
	N	P ₂ O ₅	K ₂ O	MgO	CaO	S	CI	
CONTROL	152	269	0	0	0	0	0	
MOP+GYPSUM	152	269	448	534	0	305	359	
MOP+Ca+Mg+s	152	269	448	534	192	460	359	
MOP+POLY4 (50:50)	152	269	448	267	97	305	227	
POLY4	152	269	448	534	192	609	96	

overview

PARTNER:	UNIVERSITY OF MINNESOTA
LOCATION:	MINNESOTA, US
YEAR:	2016

- The United States is the fifth largest potato producer in the world.¹
- In 2014 the US produced approximately 20 million tonnes of potato.¹
- Minnesota ranked eighth in the United States in potato production in 2016².
- POLY4 can be an important fertilizer for potato since it is chloride sensitive and requires large quantities of K and Ca.
- The trial was a randomised complete black design with four replications.
- Fertilizers were applied in a split application of 224 kg $\rm K_2O$ ha^-1 pre-planting and 224 kg $\rm K_2O$ ha^-1 at emergence.

Yield based on tuber size

• The proportion of marketable tuber size (>85 g) was highest under POLY4, compared to the alternative commercial fertilizer programmes, which resulted in improved economic return.

Specific gravity and dry matter

- Specific gravity and dry matter are quality indicators in potato production.
- POLY4 produced potato tubers with the highest dry matter content and improved fryability.
- POLY4 maintains potatoes' important quality parameters.

TREATMENTS	SPECIFIC GRAVITY	DRY MATTER (%)
MOP+GYPSUM	1.07	18
MOP+Ca+Mg+S	1.07	19
MOP+POLY4 (50:50)	1.07	19
POLY4	1.07	20

Marketable yield⁴

- With POLY4, potato yield increased by up to 15% compared MOP+gypsum option and 4% above the MOP+Ca+Mg+S option.
- The increase in yield reflects the potential of POLY4 to offer potato farmers more economic benefit than MOP-based fertilizer plans.

Net return^{4,5,6}

- POLY4+MOP blend achieved a greater yield with a lower nutrient input. This indicated greater fertilizer use efficiency.
- POLY4 increased margin by between US\$1,095 and US\$264 compared to MOP+gypsum and MOP+Ca+Mg+S options respectively.
- The POLY4 + MOP blend increased the financial margin by US\$160 compared to using MOP+Ca+Mg. The improvement in net return under MOP+POLY4 (50:50) was partly due to reduction in spreading cost.

Transforming potato fertilizer plans

- Increased application flexibility for fertilizer programmes with POLY4
- POLY4 provides sustained nutrient delivery
- POLY4 reduces chloride application
- POLY4 decreases fertilizer spreading passes and cost

Treatments	# Product by kg ha⁻¹	# Application	Cl⁻ content kg ha⁻¹
MOP+Ca+Mg+S	6035	7	359
POLY4	3970	5	96
Difference	-2065	-2	-263

Note: 1) Food and Agricultural Organisation Statistics, FAOSTAT (2017); 2) USDA (United States Department of Agriculture, 2017); 3) Initial soil analysis: pH 6.1, K 58 mg kg⁻¹, Ca 550 mg kg⁻¹, Mg 123 mg kg⁻¹, S 2.0 mg kg⁻¹; 4) Results presented are from GENSTAT analysis based on ANOVA means; 5) Fertilizer prices were obtained from CRU and are based on US Mid-West 2016 annual prices: MAP (US\$346 t⁻¹), MOP (US\$239 t⁻¹), POLY4 (US\$200 t⁻¹), gypsum (US\$25 t⁻¹), limestone (US\$25 t⁻¹). The environmentally safe nitrogen (ESN) (Agrium Inc.) (US\$232 t⁻¹) is an implied price based on urea price. The epsom price is implied price based on kieserite price (US\$250 t⁻¹). The UAN price is based on Europe price converted to US\$ (US\$161 t⁻¹). Fertilizer spreading cost: US\$16.16. The price of potato obtained from FAOSTAT: US\$193 t⁻¹; 6) net return = crop output – (cost of fertilizer material + cost of fertilizer application).

Sources: University of Minnesota (2016) 14000-UMN-14014-16.

