TRIAL RESULTS

COTTON

VIRGINIA, US (2016)

HIGHLIGHTS

56-76% INCREASED LINT YIELD WITH POLY4 USE

47%-97% IMPROVED ECONOMIC RETURNS

ROBUST ECONOMIC CASE

poly4.com
TRIAL OBJECTIVE

To compare the performance of POLY4 to common fertilizer plans containing MOP.

OVERVIEW

PARTNER: VIRGINIA TECH UNIVERSITY
LOCATION: VIRGINIA, US
YEAR: 2016
CROP VARIETY: PHYTOGEN 333

• The US is the third largest cotton producer in the world after China and India.¹

• Cotton is produced in 17 southern US states from Virginia to California.¹

• A major component of profitable cotton production is an adequate and balanced nutrition.²

• Potassium is essential nutrient for cotton fibre development.³

• Each treatment was replicated four times in a randomised complete block design.

• Soil types ranged from sands to sandy loams with limited ability to fix potassium (K).

TREATMENT TABLE

<table>
<thead>
<tr>
<th>TREATMENTS</th>
<th>AVERAGE NUTRIENTS APPLIED (kg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>CONTROL</td>
<td>112</td>
</tr>
<tr>
<td>MOP</td>
<td>112</td>
</tr>
<tr>
<td>POLY4</td>
<td>112</td>
</tr>
<tr>
<td>MOP+POLY4 (50:50)</td>
<td>112</td>
</tr>
<tr>
<td>MOP BALANCED</td>
<td>112</td>
</tr>
</tbody>
</table>
YIELD COMPARISON

- Only supplying nitrogen, phosphorus and potassium limits cotton lint yield.
- Magnesium and sulphur uptake by the cotton plant is similar in quantities to phosphorus.
- Availability of calcium is essential for plant uptake in order to form strong plant cells.
- POLY4 options deliver these nutrients more effectively than gypsum and kieserite.

FERTILIZER NET RETURN

- Using POLY4 as the K source for cotton increased net return by US$121.
- Using POLY4 with MOP in a 50:50 ratio increased net return by US$239.
- Higher application rates of POLY4 were associated with the higher yield and the increase in net return.
- Supplying potassium from MOP and POLY4 gave the largest economic return.

ECONOMIC ANALYSIS

- POLY4 offers the best marginal rate of return with an extra US$1.7 gained for every US$1 spent on the fertilizer plan.

- A higher value-cost ratio with POLY4 options demonstrates that farmers gain more economic value than expend on fertilizers.

Note: 1) USDA (US Department of Agriculture, 2017); 2) IPNI (International Plant Nutrition Institute, 2000); 3) First cotton trial (2015) in Virginia, US; 4) Treatment table is based on the recommended K₂O rate. MOP balanced contains MOP+kieserite+gypsum; 5) Results presented are based on data from GENSTAT regression analysis. All treatments received 112 kg N ha⁻¹; 100 kg K₂O ha⁻¹ from MOP and/or POLY4 and 1.12 kg B ha⁻¹. MOP+POLY4 was used in a ratio of 50:50 K₂O split. Initial soil analysis: pH 5.9; P 23 mg kg⁻¹, K 18 mg kg⁻¹, Mg 40 mg kg⁻¹, Mg 40 mg kg⁻¹; 6) Fertilizer prices based on US South 2016 annual prices: MOP (US$260/t), POLY4 (US$200/t), kieserite (US$250/t), gypsum (US$25/t). Analysis accounts for fertilizer application of spreading cost of US$16.16/t, cotton was equivalent of 2016 price (62 cent/lb US$1.37/kg); 7) Net return = crop output (US$/ha) – (cost of fertilizer material + cost of fertilizer application); 8) VCR = ratio of crop yield to fertilizer rate divided by ratio of fertilizer price to crop price.

Sources: Virginia Tech (2016) 23000-VIR-23014-16