

TRIAL RESULTS

TOMATOES

BRAZIL (2014)

TRIAL OBJECTIVE

Evaluate POLY4 fertilizer options in comparison to other K sources.

HIGHLIGHTS

HIGHEST YIELD AND FRUIT NUMBERS WHEN USING POLY4 AS A K SOURCE

POLY4 BLENDS REMOVE EXCESS CALCIUM IN FAVOUR OF MAGNESIUM

POLY4 BLENDS INCREASE YIELD BY 3% AND FRUIT NUMBERS BY 7 %

BRIX, FIRMNESS, pH AND TITRATABLE ACIDITY IMPROVED WITH POLY4 BLENDS

TRIAL DESIGN

PARTNER: UNIVERSITY OF SÃO PAULO

LOCATION: BRAZIL
YEAR: 2014

- Brazil is the seventh largest tomato market in the world¹.
- South American tomato market is worth US\$4.79 billion of which Brazil accounts for 66%1.
- Tomatoes are a chloride sensitive crop that should respond to calcium.
- This trial was conducted in silty soils with in São Paulo state.

TREATMENT TABLES

STRAIGHT TRIAL											
TREATMENTS	AVERAGE NUTRIENTS APPLIED IN TRIAL (kg ha ⁻¹)										
	N	P ₂ O ₅	K₂O	CaO	MgO	s	CI				
Control	281	275	0	0	0	0	0				
MOP	281	275	500	0	0	0	400				
SOP	281	275	500	0	0	18	30				
SOP-M	281	275	500	0	405	51	0				
POLY4	281	275	500	604	213	68	107				

BLEND TRIAL										
TREATMENTS	AVERAGE NUTRIENTS APPLIED IN TRIAL (kg ha ⁻¹)									
	N	P ₂ O ₅	K ₂ O	CaO	MgO	s	CI			
МОР	250	875	500	1328	0	540	400			
POLY4	250	875	500	595	214	681	107			

STRAIGHT STUDY

YIELD

- In an NPK balanced trial, contribution of sulphur magnesium and calcium improves yield potential.
- Crop responses to calcium from POLY4 is seen to be supportive of a meaningful yield increase.
- Overall, POLY4 improved yields by 6% over the control and 3% over.

NUMBER OF TOMATOES

(No. of fruit plant-1)2,4

- Increasing the number of fruits in the desired size category is essential for the salad market.
- POLY4 improved tomato numbers by 15% over the control and 3% over SOP-M which lacks calcium.
- The tomato crop clearly benefits from the additional nutrients supplied by POLY4.

BLEND STUDY

- In this NPK, calcium and sulphur balanced trial we compared the POLY4 option to the commercial MOP blend.
- POLY4 blends outperformed its commercial MOP equivalent by 3%.
- Using POLY4 in blends led to a 3% increase in desirable large tomatoes over that achieved with commercial MOP blends.
- The multi-nutrient supply from POLY4 enhances the nutrient spectrum beyond the commercial option.

Tomato yield1-3

NUMBER OF TOMATOES (No. of fruit plant-1)2,3,5-7

- Increasing the number of fruits is a prerequisite for meeting the fruit size category demanded by the market.
- POLY4 blends outperformed the commercial MOP equivalent by 7%.
- POLY4 blends increased fruit numbers in the desirable large size category by 6%.

Notes: 1) FAOSTAT 2017; 2) GENSTAT means; 3) Small = 50 - 60 mm diameter; Large = 60 - 80 mm diameter; 4) All treatments received 250 kg N ha⁻¹ and 275 kg P₂O₅ ha⁻¹; 5) All treatments received 250 kg N ha⁻¹ and 875 kg P₂O₅ ha⁻¹; 6) Made with MOP, Urea, TSP and SSP for 4:14:08 and 10:5:20; 7) Made with POLY4, Urea and MAP for 4:14:8 and additional MOP for 5:2.5:10. Initial soil analysis pH 5.8, P 76 mg kg⁻¹, K 101 mg kg⁻¹, Ca 380 mg kg⁻¹, Mg 96 mg kg⁻¹, S 6 mg kg⁻¹, CEC 4.28 meq 100g⁻¹.

Sources: Sirius Minerals, University of São Paulo (2014) 4000-USP-4011-14.

