

TRIAL RESULTS **POTATOES**

BRAZIL (2014)

RA LA

TRIAL OBJECTIVE

Compare the efficiency of 4-14-08 blend made with MOP to a POLY4 option as source of K on potato yield and quality.

HIGHLIGHTS

YIELD RESPONSE TO MAGNESIUM DEMONSTRATED

6% IMPROVEMENT IN AVERAGE MARKETABLE YIELD

IMPROVEMENTS IN TUBER DRY MATTER

LOWER INPUT COSTS AND LESS INPUTS NEEDED

TRIAL DESIGN

PARTNER:	UNIVERSITY OF SÃO PAULO
LOCATION:	BRAZIL
YEAR:	2014

- In 2013, produced over 3.5 Mt of potatoes accounting for 23% of global production.¹
- South American potato market is worth US\$6 billion of which Brazil accounts for 22%.¹
- Approximately 70% of potatoes are for fresh market, 20% for processing and 10% for seed.²
- Soils are highly weathered and have naturally low fertility requiring high application of fertilizer.
- Official recommendation provides 40–80 kg N ha⁻¹, 100–300 kg P_2O_5 ha⁻¹, and 100 to 250 kg K_2O ha⁻¹, at planting followed by40-80N ha⁻¹ at hilling.³
- Brazil potato growers will often use 4-14-8 blends applied prior to planting.
- This rate response study evaluated a balanced MOP 4-14-8 blend against a POLY4 equivalent.^{4,5}

		TABLE								
	TREATMENTS	AVERAGE NUTRIENT APPLIED (kg ha ⁻¹)								
		N	P ₂ O ₅	K ₂ O	CaO	MgO	S	CI		
R	MOP	177	615	352	934	0	380	281		
	POLY4	174	614	351	418	150	478	75		

MARKETABLE YIELD[°]

- POLY4 blend achieves peak yield from 125 kg K₂O ha⁻¹ compared to the standard 400 kg K₂O required from the current commercial blend.
- Using POLY4 blends product application rate can be 68% less whilst maintaining yield.
- These yield improvements demonstrate practical considerations of POLY4 blends to growers without compromising yields.

MARKETABLE YIELD BY SIZE 4.5.7.8

- In this balanced NPK, calcium and sulphur trial, the POLY4 (4:14:8) blend outperformed its commercial equivalent by 6%.
- POLY4 blend improved the yield of small potatoes by 9% compared to MOP blend.
- For the desirable potatoes of larger than 6cm, POLY4 blend improved yields by 4%.
- The additional nutrients from POLY4, particularly magnesium, in this blend supported larger yields.
- POLY4 successfully substitutes calcium and sulphur from TSP and expensive SSP.

POLY4 blend² — MOP+S+Ca blend³ 38 36 34 Yield (t ha⁻¹) 32 30 28 26 24 22 100 250 400 0 50 150 200 300 350 Application rate (kg K₂O ha⁻¹)

TUBER QUALITY 4,5,7

- Tuber dry matter is an indicator of total energy and nutrient content in the edible crop.
- POLY4 improved tuber dry matter by 2% over the MOP blend.
- Being essentially chloride free, POLY4 removes the problem of chloride management, commonly associated with MOP use.
- Chlorides can be responsible for up to 2% reduction in tuber dry matter content.^{9,10}

BRAZIL POLY4 NPK OPTION

- Inclusion of POLY4 improves the total nutrient content of the blend and could reduce input costs.¹¹
- The POLY4 option simplifies the blend feedstock reducing inputs.
- Supplementation of the commercial blend with magnesium would add an extra ~US\$30/t cost.
- POLY4 option provides beneficial micro-nutrients not supplied by the traditional 4:14:8 NPK blend.
- Trial results indicate that POLY4 blend fed potatoes require less product.

FAOSTAT 2017; 2) US Potato Board 2014; 3) IAC, 2014; 4) Made with MOP, Urea, TSP and SSP for 4:14:8; 5) Made with POLY4, Urea and MAP for 4:14:8; 6) GENSTAT regression analysis; 7) GENSTAT mean results; 8) Small = <6 cm length; Medium = 6-9 cm length; Large = >9cm length; 9) The Potash Development Association, 2008; 10) University of Nebraska, 2014; 11) Input prices based on CFR Brazil estimates on; Urea Granular US\$350/t; TSP US\$385/t; MOP US\$400/t; SSP US\$300/t; POLY4 US\$200/t; Kieserite US\$250/t. Initial soil analyses pH 4.8; P 108 mg kg, K 128 mg kg⁻¹, S 12 mg kg⁻¹, Mg 72 mg kg⁻¹, Ca 640 mg kg⁻¹.

Sources: Sirius Minerals, University of São Paulo (2014) 4000-USP-4012-14

siriusminerals.com | +44 1723 470 010 | commercial@siriusminerals.com

Registered Address: 3rd Floor Greener House, 66–68 Haymarket, London SW1Y 4RF, UK Company Registered Number: 4948435

