TRIAL OBJECTIVES
To assess the effect of POLY4 as a K₂O source on wheat yield and yield attributes, and to assess the differences in rate response between two sources.

HIGHLIGHTS
9% INCREASE IN YIELD
10% INCREASE IN TOTAL BIOMASS YIELD
ENHANCED GRAIN AND STRAW UPTAKE OF N, K, S, Mg AND Ca
INCREASE IN FARMER RETURN OF US$24/ha
IMPROVEMENT IN WHEAT PROTEIN, A VALUABLE QUALITY TRAIT

TRIAL DESIGN
PARTNERS: NANJING INSTITUTE OF SOIL SCIENCE, CHINESE ACADEMY OF SCIENCE
LOCATION: NANJING, CHINA
YEAR: 2015

• Wheat is the third largest crop in mainland China based on hectares planted.¹
• Jiangsu province, where this trial was conducted, is one of the key wheat producing regions.
• In 2015, wheat accounted for 21% of Chinese grain production.²

TREATMENT TABLE (kg ha⁻¹)³

<table>
<thead>
<tr>
<th>NUTRIENT</th>
<th>AVERAGE NUTRIENT APPLIED IN TRIAL (kg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Control</td>
<td>180</td>
</tr>
<tr>
<td>MOP</td>
<td>180</td>
</tr>
<tr>
<td>POLY4</td>
<td>180</td>
</tr>
</tbody>
</table>
• POLY4 increased wheat grain yield by 9%.

• MOP can replace potassium offtake but lacks sulphur to provide an additional yield boost.

• An increased yield from the same K_2O application rate means an improved fertilizer use efficiency.

• In this straight trial, the increased availability of potassium, sulphur, magnesium and calcium to the plant from low chloride POLY4 is shown.

YIELD RESULT (t ha$^{-1}$)3,4,8

- POLY4 increases plant biomass – an indicator of a taller and stronger wheat crop.

- POLY4 increased total biomass weight by 10% over MOP which can be attributed to a more balanced fertilizer plan.

BIOMASS YIELD RESULT (t ha$^{-1}$)3,4

1. POLY4 increased wheat grain yield by 9%.

2. MOP can replace potassium offtake but lacks sulphur to provide an additional yield boost.

3. An increased yield from the same K_2O application rate means an improved fertilizer use efficiency.

4. In this straight trial, the increased availability of potassium, sulphur, magnesium and calcium to the plant from low chloride POLY4 is shown.

YIELD RESULT (t ha$^{-1}$)3,4,8

- POLY4 increases plant biomass – an indicator of a taller and stronger wheat crop.

- POLY4 increased total biomass weight by 10% over MOP which can be attributed to a more balanced fertilizer plan.

BIOMASS YIELD RESULT (t ha$^{-1}$)3,4

- POLY4 increases plant biomass – an indicator of a taller and stronger wheat crop.

- POLY4 increased total biomass weight by 10% over MOP which can be attributed to a more balanced fertilizer plan.
POLY4 is shown to support fertilizer use efficiency (FUE) by improving grain and biomass nutrient uptake.

Importantly, POLY4 ensures high FUE of nitrogen – a key element in support of the Chinese government’s zero growth policy.

POLY4 provides an excellent source of plant-available potassium, sulphur, magnesium and calcium.

The trial setup focused on demonstrating the effectiveness of POLY4 as a potassium source.

Accounting for an increase in the cost of the fertilizer plan in this straight trial, POLY4 still offers a more economical alternative with a margin over input increase of US$24 per hectare to the farmer.

Notes: 1) FAO 2014; 2) Based on data available in the Chinese Statistical yearbook; 3) All plots received 180 kg N ha⁻¹ and 120 kg P₂O₅ ha⁻¹ from Urea and DAP; 4) GENSTAT means; 5) Fertilizer prices based on China 2016 annual prices: urea (US$210/t), DAP (US$322/t), MOP (US$270/t), POLY4 (US$200/t); 6) Analysis accounts for yield changes and fertilizer application cost of US$10.78/t; 7) Wheat price fixed for 2016 at US$342/t; 8) Initial soil analysis pH 6.7, P 21.9 mg kg⁻¹, K 43.5 mg kg⁻¹, Ca 1096 mg kg⁻¹, Mg 214 mg kg⁻¹, S 119 mg kg⁻¹, EC 0.1 S m⁻².