

TRIAL RESULTS

SICHUAN, CHINA (2015)

poly4.com

TRIAL OBJECTIVE

To compare POLY4 to SOP as a low chloride alternative potassium source.

HIGHLIGHTS

IMPROVED SPRING AND SUMMER DRY WEIGHT YIELD BY 3% AND 7% RESPECTIVELY

MAINTAINED TEA QUALITY THROUGHOUT THE SEASONS WHILST ELEVATING YIELD

LOWER POST-TRIAL SOIL EC THAN SOP

IMPROVED RESIDUAL CALCIUM, MAGNESIUM AND SULPHUR IN THE SOIL BY 7%, 30% AND 4% COMPARED TO SOP

PARTNER:	SICHUAN ACADEMY OF AGRICULTURAL SCIENCE					
LOCATION:	SICHUAN, CHINA					
YEAR:	2015					
CROP VARIETY:	WUNIUZAO					

- Tea is the most popular drink in the world with 4.8 million tonnes consumed in 2013.¹
- China accounts for 72% of the global tea market, worth US\$12.87 billion in 2013.²
- Tea requires specific agro-ecological conditions including high temperatures and precipitation found in tropical climates.
- Potassium is a key yield driver, commonly supplied from SOP for this chloride-sensitive crop.
- The tea variety grown was Wuniuzao which is a local, high yielding variety.
- 50% of total nitrogen, 100% of total phosphate and 50% of total potassium were applied as base fertilizer at trial commencement, and the remaining 50% of total nitrogen and 50% of total potassium was applied as a dressing side in the spring.
- Pruning was conducted in spring and summer as tea bushes can be harvested several times in a year.

TREATMENT TABLE

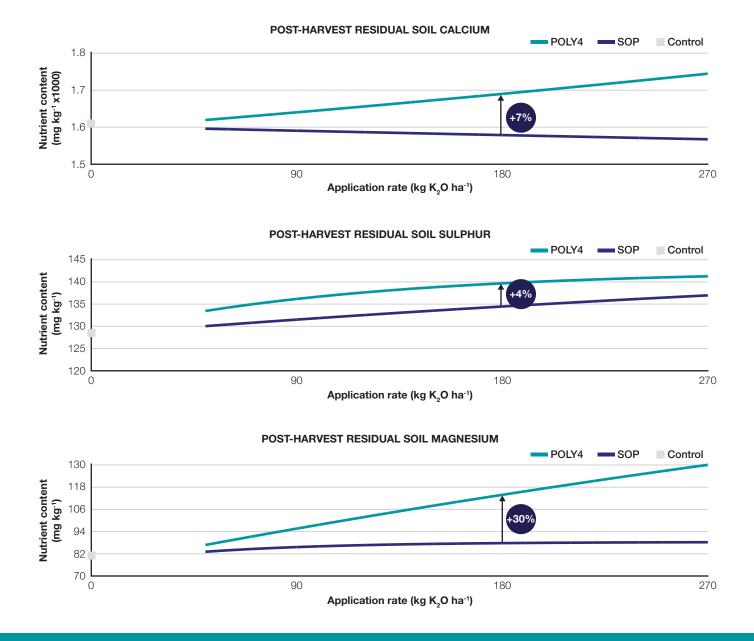
FERTILIZER

AVERAGE NUTRIENT APPLICATION (kg ha⁻¹)^{3,4}

	N	P ₂ O ₅	K ₂ O	MgO	CaO	S	CI	
Control	240	120	0	0	0	0	0	
SOP	240	120	169	0	0	57	10	
POLY4	240	120	169	72	205	229	36	

YIELD RESULT (kg ha^{-1)5,6}

- POLY4 is an essentially chloride free source of potassium and represents an alternative fertilizer for tea farmers.
- Sustained potassium delivery during crop growth supports plant-water relations and disease tolerance.
- POLY4 increased leaf dry matter yields by 3% and 7% for spring and summer harvests respectively.


TEA QUALITY PARAMETERS (kg ha⁻¹)^{5,6}

- Tea quality, as assessed by professional tasters, actually reflects the polyphenol/amino acid ratio.
- A lower ratio imparts a fresh and brisk taste, the higher the ratio of polyphenol the more acidic the flavour of the tea.
- Water extractable solids correlate with amino acids, therubins and flavour index.
- Leaf proteins release amino acids and caffeine during processing.
- All of these parameters support production of quality tea.

PARAMETER	CONTROL AND S-BASED FERTILIZER							
	Control		SOP		POLY4			
	Spring	Summer	Spring	Summer	Spring	Summer		
Yield (kg ha ⁻¹)	383	85	403	95	415	102		
Taste (polyphenol/amino acid ratio)	0.35	0.27	0.38	0.25	0.34	0.26		
Protein (g kg ⁻¹)	389	426	393	429	396	433		
Water extractable solids (g kg ⁻¹)	434	418	438	426	440	431		

- Residual nutrients reflect fertilizer application rates, with POLY4 supplying additional magnesium and calcium.
- Higher residual calcium, magnesium and sulphur in the soil can benefit future crops.
- POLY4 significantly improved soil calcium, magnesium and sulphur content post-harvest.

Notes: 1) FAO IGG Secretariat (2015); 2) FAO 2013; World tea production and trade: current and future development. FAO:Rome; 3) GENSTAT means of inputs for 90–270 kg K₂O ha⁻¹ except for control where 0 kg K₂O ha⁻¹; 4) Urea and MAP supplied 240 kg N ha⁻¹ and 120 kg P₂O₅ ha⁻¹; 5) GENSTAT means; 6) All plots received 240 kg N ha⁻¹ and 120 kg P₂O₅ ha⁻¹ from urea and MAP with 169 kg K₂O ha⁻¹ from SOP or POLY4; 7) GENSTAT regression analysis. Initial soil analysis pH 4.56, p6.5 mg kg⁻¹, K 57 mg kg⁻¹; Ca 1602 mg kg⁻¹; Mg 88 mg kg⁻¹; S 126 mg kg⁻¹; EC 0.138 mS/cm.

Source: Sichuan Academy of Agricultural Science (2015). 19000-SAAS-19011-14

siriusminerals.com | +44 1723 470 010 | commercial@siriusminerals.com

Registered Address: 3rd Floor Greener House, 66–68 Haymarket, London SW1Y 4RF, UK Company Registered Number: 4948435

