

TRIAL RESULTS

RICE

TRIAL OBJECTIVES

To determine the efficacy of POLY4 as a K₂O source compared to MOP.

HIGHLIGHTS

4% INCREASE IN YIELD

38% INCREASE IN POTASSIUM UPTAKE

NO ANTAGONISTIC NUTRIENT UPTAKE SHOWN BETWEEN PHOSPHORUS AND CALCIUM

INCREASE IN N, P, Mg, Ca AND S UPTAKE

26% REDUCTION IN ALUMINIUM UPTAKE — A POTENTIALLY TOXIC ELEMENT

5-27% IMROVEMENT IN MICRO NUTRIENT UPTAKE

TRIAL DESIGN

PARTNERS: NANJING INSTITUTE OF SOIL SCIENCE,

CHINESE ACADEMY OF SCIENCE

LOCATION: JIANGSU, CHINA

YEAR: 2014

- Potassium fertilization is a key factor for field crops production, especially in China, where the supply is not sufficient and stable.
- Rice is a staple food in China, around 60% of the population utilise rice for survival¹.
- Rice accounts for approximately a third of grain crops produced in China².
- POLY4 and MOP treatments were trialled in a rate response study at application rates of 45, 90 and 130 kg K₂O per hectare.
- Treatments were set out in a complete randomised block design.

TREATMENT TABLE (kg ha-1) 1

NUTRIENT	AVERAGE NUTRIENT APPLIED IN TRIAL (kg ha ⁻¹)						
	N	P ₂ O ₅	K ₂ O	MgO	CaO	s	CI
Control	140	200	0	0	0	0	0
MOP	140	200	90	0	0	0	72
POLY4	140	200	90	38	109	123	19

YIELD RESULTS (t ha-1)

- POLY4 delivered a 4% yield premium at the recommended rate of 90kg K₂O per hectare.
- An increase in yield from the same nutrient application rates means an improved fertilizer use efficiency.
- In this straight potassium substitution trial the benefits of additional magnesium, sulphur and calcium become apparent.
- Root zone chloride has harmful effects on root nitrate uptake which may account for part of the difference.

MOP POLY4

MACRO NUTRIENT UPTAKE (kg ha⁻¹) 3,5

- Rice grown in high-intensity farming systems require large amounts of nitrogen – approximately 20–25 kg per tonne of yield – POLY4 supports nitrogen uptake promoting larger yield potential.
- POLY4 shows no antagonistic nutrient uptake between phosphorus and calcium.
- POLY4 supports an above average 38% increase in potassium uptake which is vital for plant cell wall strength.
- Potassium, sulphur and calcium play important roles in combatting heavy metal uptake and toxicity.

MICRO NUTRIENT UPTAKE (kg ha⁻¹) 3,5

- Boron is a key nutrient for the maintenance of cell wall integrity.
- Copper is a co-factor in enzyme systems which function in protein metabolism, respiration and pollen formation.
- Manganese is involved in the redox reactions of photosynthesis and respiration. POLY4 increases manganese uptake by 27% mitigating against iron toxicity seen as bronzing of crop foliage.
- Aluminium toxicity can be a constraint on some soils:
 POLY4 is shown to assist by a 26% reduction in uptake.

1) USDA 2014; 2) Based on Chinese Statistical Handbook data for 2015; 3) All plots received 140 kg N ha $^{\circ}$ and 200 kg P $_{2}$ O $_{5}$ ha $^{\circ}$ from Urea and MAP; 4) GENSTAT regression analysis; 5) GENSTAT means. Initial soil analysis P 13 mg kg $^{\circ}$, K 43 mg kg $^{\circ}$, Mg 37 mg kg $^{\circ}$, Ca 34 mg kg $^{\circ}$, S 27 mg kg $^{\circ}$.

2) Source: USDA: Chinese Statistical Yearbook (2016); Naniing Institute of Soil Science. Chinese Academy (20000-CAS-20010-14

Source: University of Minnesota (2015) 20000-CAS-20010-14

