

TRIAL RESULTS CHILL PEPPER

SICHUAN, CHINA (2015)

TRIAL OBJECTIVE

To demonstrate that POLY4 blend options are a practical alternative to SOP blends.

HIGHLIGHTS

5% YIELD IMPROVEMENT

12% INCREASE IN FRUIT NUMBERS AND A 5% INCREASE IN FRUIT WEIGHT

QUALITY IMPROVEMENTS SEEN VIA INCREASES IN CAPSAICIN, CAPSAICIN PIGMENT, SOLUBLE SOLID, AMINO ACID AND VITAMIN C CONTENT

SIGNFICANT DECREASE IN POST-HARVEST SOIL ELECTRICAL CONDUCTIVITY AND NO pH DRIFT

UP TO 13% INCREASE IN LEAF MACRO NUTRIENT CONTENT

VALUABLE IMPROVEMENTS IN RESIDUAL SOIL CALCIUM, MAGNESIUM AND SULPHUR

TRIAL DESIGN

PARTNER:	SICHUAN ACADEMY OF AGRICULTURAL SCIENCE
LOCATION:	SICHUAN, CHINA
YEAR:	2015

- The global fresh chilli pepper market is estimated to be worth US\$ 29.45 billion.¹
- China is the leading global producer of chilli peppers producing 15.8 Mt in 2013 which translates into a 39% financial share of the global market.¹
- Hainan, Hunan, Sichuan, Guangdong and Jiangxi are the main provinces accounting for 94% of chilli pepper production in China.²
- Chilli peppers require high amounts of magnesium and potassium from low chloride fertilizer sources.³
- In this trial, four rates of K₂O application (53, 88, 175 and 263 kg K₂O ha⁻¹) were used to compare SOP and POLY4 based blend options.
- At flowering, both the SOP and POLY4 NPK blend plots were given a top dressing of 90 kg N ha⁻¹ from urea.
- The POLY4 option supplies additional magnesium and calcium plus beneficial micro nutrients beyond the SOP based option.
- Plots measuring 15 m² each were used for all treatment and rate combinations.

TREATMENT TABLE

FERTILIZER	RECOMMENDED RATE (kg ha ⁻¹) ⁴⁻⁶								
	N	P ₂ O ₅	K ₂ O	MgO	CaO	s	CI		
SOP based NPK (15:10:15)	175	118	175	0	46	63	7		
POLY4 based NPK (15:10:15)	175	118	175	23	64	118	19		

YIELD RESULT (t ha⁻¹)^{5,6,7,8}

- The supply of magnesium and calcium coupled with potassium from POLY4 in the blend is more suited to the chilli pepper plant's needs.
- The POLY4 based NPK 15:10:15 blend outperformed the SOP based NPK 15:10:15 blend, with a 5% yield improvement at the recommended 175 kg K₂O ha⁻¹ application rate.

CHILLI PEPPER QUALITY (kg ha⁻¹)^{5,6,8,9}

- Capsaicin evolved as a natural anti-fungal (against *Fusarium spp.*) but also acts as a deterrent to mammalian vermin.
- Colour changes from capsicum pigment content largely reflect fruit maturity but delays caused by excess nitrogen nutrition can reduce the formation of the red pigment.

SOIL ELECTRICAL CONDUCTIVITY (EC)^{(mS cm⁻¹)⁵⁻⁸}

- Fertilizers are soluble salts that can increase soil salinity.
- High soil EC inhibits seed germination and a plant's uptake of water and nutrients.
- The SOP based NPK blend demonstrates an increasing soil EC in line with application rate.
- Plots that had the POLY4 based NPK blend applied showed a 25% reduction in soil EC, at a recommended 175 kg K₂O ha⁻¹, compared to the SOP based NPK blend.

POST-HARVEST RESIDUAL NUTRIENTS^{®®}

- The post-harvest soil nutrient status demonstrates the value of additional nutrients in the POLY4 based NPK blend.
- Enhancing residual soil nutrients can benefit subsequent crops.

SOP based NPK(15:10:15)

59

58

57

56

55 54

0

Nutrient content (mg kg⁻¹)

• The POLY4 based NPK blends showed consistent increases in post-harvest soil nutrient levels at the recommended application rate of 175 kg K₂O ha⁻¹.

90

MINERALS PLC

Notes: 1) FAO 2013; 2) Provinces identified by The World Vegetable Center based on share of production in China; 3) IFA World Fertilizer Use Manual 1992; 4) GENSTAT means of inputs for 53–263 kg K_2 O ha⁻¹; 5) SOP NPK 15:10:15 blend made from urea, TSP and SOP; 6) POLY4 NPK 15:10:15 blend made from urea, MAP, POLY4 and SOP; 7) GENSTAT regression analysis; 8) Top dressing of 90 kg N ha⁻¹ from urea applied at flowering; 9) GENSTAT means. Initial soil analysis: pH 5.2, organic matter 2%, N 69 mg kg⁻¹, P 37 mg kg⁻¹, K 78 mg kg⁻¹, Ca 1710 mg kg⁻¹, Mg 80 mg kg⁻¹, S 65 mg kg⁻¹, EC 0.104 mS cm⁻¹.

Sources: Sichuan Academy of Agricultural Science (2015), FAO (2013), The World Vegetable Center (2006) and IFA (1992). 19000-SAAS-19013-15

270

180

Application rate (kg K₂O ha⁻¹)

